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A Fluorinated Nucleophilic Carbenoid Reagent Stabilized by a Silyl Substituent 
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Abstract: The title carbenoid reagent was generated by treatment of dibmmofluommethyl(t- 
butyl)dimethylsil~ne with butyllithium in THF at -78 °C ~d was allowed to react with aldehydes md 
ketones to give 1-fluoro- l-silyloxiranes in good yields. Alkylation ofthe silyl-substituted carbenoid was 
also achieved efficiently in good yields. © 1997 Elsevier Science Ltd. 

For the synthesis of organofluorine compounds, fluorohalomethylmetals are valuable reagents which are 

readily accessible from fluorohalohydrocarbons. 1 We recently reported that the treatment of 

tribromofluoromethane (1) with butyllithium at -130 °C generates the lithium carbenoid 2, which reacted with 

aldehydes and ketones to give the corresponding fluorinated alcohols in good yields. 2 However, since the 

carbenoid 2 is thermally labile, the generation of 2 should be carried out at -130 ~C /n the presence of an 

electrophile. We envisioned that the replacement of one bromine in 2 with silicon 3 would enhance the stability 

of 4 due to the a-anion-stabilizing effect of s i l i con  4 to allow us to add an electrophile after the generation of 4. s 

Furthermore, the presence of a silyl substituent in the initial products would extend the synthetic utility of the 

fluorinated products. We report herein that the silicon-containing lithium carbenoid 4 6 is s u c c e s s f u l l y  generated 

from dibromofluoromethyl(t-butyl)dimethylsilane (3) with butyllithium, and reacts with carbonyl compounds to 

give 1-fluoro- 1-silyloxiranes 5 or with alkyl halides to afford the alkylated products 6 in good yields. 

R' = t -BuMe2S~__ .~R  
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A THF solution of dibromofluoromethyl(t-butyl)dimethylsilane 7 (3) and a carbonyl compound was treated 

with butyllithium at -78 qC. The resulting solution was stirred for 30 min at -78 qC and allowed to warm up to 

room temperature. The reaction mixture was quenched with sat. aq. NH4C1 solution. Workup and 

purification by silica gel column chromatography gave 5 as summarized in Table 1 .s 

Table 1. Carbonyl Addition of Lithium Carbenoid 4 

Entry RR'C=O R R' Product Yield (%) a) Diastereomerio 
ratio b) 

1 Ph(CH2)2CHO H Ph(CH2)2 5a 73 55 : 45 

2 n-C7HlsCHO H n-CTH15 5b 97 56 : 44 

3 Ph(CH2)2__ 5 ¢ 94 64 36 
4 c) M ~F==Oe / Me Ph(CH2)2 16 68 32 
5 d) 86 67 33 

6 ~ ' - ~ O  "(CH 2)2CH( t'Bu)(CH 2)2" 5d  98 73 27 

7 ~ , : =  O -(CH 2)5- 5 e 97 

8 O Ph Ph 5f 89 
P 

a) Isolated yield, b) The diastereomeric ratio was determined on the basis of 1H and 19F NMR spectroscopy. 
The stereochemistry was not determined, c) 4-Phenyl-2-butanone was added to the reaction mixture after the 
generation of 4 at -78 °C. d) The carbenold 4 was generated at -98 °C before the addition of 
4-phenyl-2-butanone. 

Aldehydes and ketones gave the corresponding l-fluoro-l-silyloxiranes 59 in good to excellent yields 

(except for entry 4) with moderate diastereoselectivity (55 : 45 ~ 73 : 27). l° Oxirane 5 was apparently 

produced by carbonyl addition of 4 to give alkoxide 8 followed by cyclization (Scheme 2). 5f'~ Noteworthy is 

that the substitution reaction took place at the fluorine-substituted carbon. The substitution is generally 

considered to be difficult to carry out. 1 ~ Indeed, the lithium alkoxide 7 derived from 2 did not cyclize even at 

the refluxing temperature of THF. 2 The ring-closure of 8 to give 5 should be attributed to the interaction of the 

Si-C o* orbital with the p-orbital to stabilize the transition state of the nucleophilic substitution. 12 Thus, the 

silicon accelerating effect for the nucleophilic substitution at the a-carbon surpasses the fluorine retarding effect. 

I~r R' O -Li + /'/ " F" "R' 
Z - C - L i  ,, R 

F R' Z = Si( t-Bu)Me2 R 3 S ~  R 

2 : Z = B r  7 : Z = B r  F" "R' 
4 : Z = Si( t-Bu)Me2 8 : Z = Si( t-Bu)Me2 5 

Scheme 2 
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The augmented stability of 4 was apparently confLrmed by the fact that the generation and reaction of 4 

with a coexisting electrophile could be carried out at -78 ~C. Moreover, at -98 ~C, an electrophile could be 

added after the generation of the carbenoid reagent (Table 1, entry 5). This observation suggests that 4 can be 

reacted with an electrophile which may c o s t i v e l y  react with butyllithium. For example, alkylation was 

carried out by generation of 4 at -98 'C followed by the addition of an alkylating reagent. The results are 

shown in Table 2. The relatively reactive alkyl halides and sulfonates as well as chlorotrimethylsilane gave the 

alkylated (silylated) products in good yields) T M  

Table 2. Alkylation of Lithium Carbenoid 4 

R"--X Product Yield (%) a) R"--X Product Yield (%) a) 

Mel 6 a 70 b) P ~ B r  6 f trace 

Etl 6 b 85 b) P ~ I  6 f 81 

PtT'A'Br 6c 62 P ~ O T f  6f  83 

~ B r  6 d 69 ~ O T f  6 g 90 

~ B r  6 • c) 66 Me3SiCI 6h 74 

a) Isolated yield, b) Yields were determined by 1H NMR using 1,1,2-trichloroethylene as an 
intemal standard, c) ot-Alkylated product only. 

The utility of the silicon-substituted carbenoid approach for monofluoro compounds is demonstrated by the 

sequential reactions involving preparation of 3, generation, and alkylation of 4 in one pot (Scheme 3). Thus, 1 

(1.5 mol) was treated with butyllithium (1.5 mol) in the presence of t-butylchlorodimethylsilane (1.5 mol) in 

THF-Et20 (2 : 1) at -130 T~. To the mixture, additional butyllithium (1.2 mol) and benzyl bromide (1 mol) 

were added successively at -98 °C to give rise to 6c in 71% yield. 

t'BuMe2SiCI BuLi I Brj 1) BuLi, -98 °C Br P h  
l t-BuMe2Si-C- Br " t-BuMe2Si- C - - /  + THF-Et20 i 2) PhCH2Br i 

CFBr 3 (2 : 1) F F 
71% 1 -130 °C 3 6 e 

Scheme 3 

In summary, we have demonstrated that the introduction of a silyl group into a fluorine-containing lithium 

carbenoid enhances the stability of the reagent to react with carbonyl compounds, 1-fluoro-l-silyloxiranes being 

produced in good yields through carbonyl addition followed by intramolecular cyclizafion. Alkylation of the 

fluorinated carbenoid with alkyl halides afforded the corresponding products in yields of synthetic value. The 

present reagent provides a convenient way for the synthesis of monofluoro compounds. Further synthetic 

applications of 1-fluoro- 1 -silyloxiranes and alkylated products are under investigation in our laboratory. 
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